博客
关于我
1024块TPU在燃烧!BERT训练从3天缩短到76分钟 | 技术头条
阅读量:127 次
发布时间:2019-02-26

本文共 756 字,大约阅读时间需要 2 分钟。

BERT预训练时间大幅缩短:Google与UC Berkeley研究团队提出新算法

近日,Google与UC Berkeley、UCLA的研究团队在大模型训练领域取得重大突破。他们成功将BERT预训练的时间从三天压缩至76分钟,采用LAMB优化器后实现了这一显著进展。

BERT作为当前最耗时的工业界应用之一,其预训练过程一直面临效率瓶颈。特别是在使用大批量数据时,传统的训练方法难以满足需求。UC Berkeley博士尤洋在接受采访时表示:“直接优化传统批处理方法会导致测试集准确性下降,这对模型性能是一个严峻挑战。”

为了应对这一难题,他们提出了一种全新的优化算法LAMB(LARGE batch Matrix Optimization)。该算法不仅支持更大的批量处理(如65536),还能在不降低准确率的情况下显著提升训练效率。具体而言,使用LAMB优化器的BERT-Large模型在批量处理为65536时,仅需8599次迭代完成预训练,而传统方法需要100万次迭代。

尤洋的研究团队还进一步优化了批量处理的内存限制,实现了与TPUv3 pod相匹配的训练效果。最终,他们将BERT的预训练时间从三天压缩至76分钟。

尤洋的研究成果备受关注。他目前专注于大规模深度学习训练算法的分布式优化。值得一提的是,他曾在2017年9月以24分钟完成ImageNet训练,刷新了世界纪录。尤洋的导师是美国科学院与工程院院士、伯克利计算机系主任James Demmel教授,这为他的研究提供了坚实的理论基础。

推荐阅读:

  • 「2019 Python开发者日」演讲议题全揭晓!10余位一线Python技术专家共同打造硬核技术大会。
  • 更有深度培训实操环节,为开发者们带来更多深度实战机会。

点击阅读原文,查看更多历史精彩文章。

转载地址:http://muay.baihongyu.com/

你可能感兴趣的文章
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:从头开始的文本矢量化方法
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
NLTK - 停用词下载
查看>>
nmap 使用总结
查看>>
nmap 使用方法详细介绍
查看>>
nmap使用
查看>>
nmap使用实战(附nmap安装包)
查看>>
Nmap哪些想不到的姿势
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>