博客
关于我
1024块TPU在燃烧!BERT训练从3天缩短到76分钟 | 技术头条
阅读量:127 次
发布时间:2019-02-26

本文共 756 字,大约阅读时间需要 2 分钟。

BERT预训练时间大幅缩短:Google与UC Berkeley研究团队提出新算法

近日,Google与UC Berkeley、UCLA的研究团队在大模型训练领域取得重大突破。他们成功将BERT预训练的时间从三天压缩至76分钟,采用LAMB优化器后实现了这一显著进展。

BERT作为当前最耗时的工业界应用之一,其预训练过程一直面临效率瓶颈。特别是在使用大批量数据时,传统的训练方法难以满足需求。UC Berkeley博士尤洋在接受采访时表示:“直接优化传统批处理方法会导致测试集准确性下降,这对模型性能是一个严峻挑战。”

为了应对这一难题,他们提出了一种全新的优化算法LAMB(LARGE batch Matrix Optimization)。该算法不仅支持更大的批量处理(如65536),还能在不降低准确率的情况下显著提升训练效率。具体而言,使用LAMB优化器的BERT-Large模型在批量处理为65536时,仅需8599次迭代完成预训练,而传统方法需要100万次迭代。

尤洋的研究团队还进一步优化了批量处理的内存限制,实现了与TPUv3 pod相匹配的训练效果。最终,他们将BERT的预训练时间从三天压缩至76分钟。

尤洋的研究成果备受关注。他目前专注于大规模深度学习训练算法的分布式优化。值得一提的是,他曾在2017年9月以24分钟完成ImageNet训练,刷新了世界纪录。尤洋的导师是美国科学院与工程院院士、伯克利计算机系主任James Demmel教授,这为他的研究提供了坚实的理论基础。

推荐阅读:

  • 「2019 Python开发者日」演讲议题全揭晓!10余位一线Python技术专家共同打造硬核技术大会。
  • 更有深度培训实操环节,为开发者们带来更多深度实战机会。

点击阅读原文,查看更多历史精彩文章。

转载地址:http://muay.baihongyu.com/

你可能感兴趣的文章
Netty 解决TCP粘包/半包使用
查看>>
Netty 调用,效率这么低还用啥?
查看>>
Netty+Protostuff实现单机压测秒级接收35万个对象实践经验分享
查看>>
Netty+SpringBoot+FastDFS+Html5实现聊天App详解(一)
查看>>
netty--helloword程序
查看>>
Netty5.x 和3.x、4.x的区别及注意事项(官方翻译)
查看>>
netty——bytebuf的创建、内存分配与池化、组成、扩容规则、写入读取、内存回收、零拷贝
查看>>
netty——Channl的常用方法、ChannelFuture、CloseFuture
查看>>
netty——Future和Promise的使用 线程间的通信
查看>>
Vue输出HTML
查看>>
netty——黏包半包的解决方案、滑动窗口的概念
查看>>
Netty中Http客户端、服务端的编解码器
查看>>
Netty中使用WebSocket实现服务端与客户端的长连接通信发送消息
查看>>
Netty中实现多客户端连接与通信-以实现聊天室群聊功能为例(附代码下载)
查看>>
Netty中的组件是怎么交互的?
查看>>
Netty中集成Protobuf实现Java对象数据传递
查看>>
netty之 定长数据流处理数据粘包问题
查看>>
Netty事件注册机制深入解析
查看>>
netty代理
查看>>
Netty入门使用
查看>>